Publikasi Scopus 2024 per tanggal 31 Maret 2024 (233 artikel)

Gan P.; Hajis M.I.B.; Yumna M.; Haruman J.; Matoha H.K.; Wahyudi D.T.; Silalahi S.; Oktariani D.R.; Dela F.; Annisa T.; Pitaloka T.D.A.; Adhiwijaya P.K.; Pauzi R.Y.; Hertanto R.; Kumaheri M.A.; Sani L.; Irwanto A.; Pradipta A.; Chomchopbun K.; Gonzalez-Porta M.
Gan, Pamela (58782967400); Hajis, Muhammad Irfan Bin (58782308400); Yumna, Mazaya (58782522200); Haruman, Jessline (57224958767); Matoha, Husnul Khotimah (58553131400); Wahyudi, Dian Tri (58781651300); Silalahi, Santha (58782967500); Oktariani, Dwi Rizky (58781651400); Dela, Fitria (58782522300); Annisa, Tazkia (58782522400); Pitaloka, Tessalonika Damaris Ayu (58781869500); Adhiwijaya, Priscilla Klaresza (58782522500); Pauzi, Rizqi Yanuar (58782522600); Hertanto, Robby (57210921447); Kumaheri, M
58782967400; 58782308400; 58782522200; 57224958767; 58553131400; 58781651300; 58782967500; 58781651400; 58782522300; 58782522400; 58781869500; 58782522500; 58782522600; 57210921447; 56460248100; 57191698878; 57204866252; 57216644806; 57190669382; 58662529100
Development and validation of a pharmacogenomics reporting workflow based on the illumina global screening array chip
2024
Frontiers in Pharmacology
15
1349203
0
Nalagenetics Pte Ltd., Singapore, Singapore; PT Genomik Solidaritas Indonesia, Jakarta, Indonesia; Department Biochemistry and Molecular Biology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
Gan P., Nalagenetics Pte Ltd., Singapore, Singapore; Hajis M.I.B., Nalagenetics Pte Ltd., Singapore, Singapore; Yumna M., Nalagenetics Pte Ltd., Singapore, Singapore; Haruman J., Nalagenetics Pte Ltd., Singapore, Singapore; Matoha H.K., PT Genomik Solidaritas Indonesia, Jakarta, Indonesia; Wahyudi D.T., PT Genomik Solidaritas Indonesia, Jakarta, Indonesia; Silalahi S., PT Genomik Solidaritas Indonesia, Jakarta, Indonesia; Oktariani D.R., PT Genomik Solidaritas Indonesia, Jakarta, Indonesia; Dela F., PT Genomik Solidaritas Indonesia, Jakarta, Indonesia; Annisa T., PT Genomik Solidaritas Indonesia, Jakarta, Indonesia; Pitaloka T.D.A., PT Genomik Solidaritas Indonesia, Jakarta, Indonesia; Adhiwijaya P.K., PT Genomik Solidaritas Indonesia, Jakarta, Indonesia; Pauzi R.Y., PT Genomik Solidaritas Indonesia, Jakarta, Indonesia; Hertanto R., PT Genomik Solidaritas Indonesia, Jakarta, Indonesia; Kumaheri M.A., PT Genomik Solidaritas Indonesia, Jakarta, Indonesia; Sani L., Nalagenetics Pte Ltd., Singapore, Singapore; Irwanto A., Nalagenetics Pte Ltd., Singapore, Singapore; Pradipta A., PT Genomik Solidaritas Indonesia, Jakarta, Indonesia, Department Biochemistry and Molecular Biology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia; Chomchopbun K., Nalagenetics Pte Ltd., Singapore, Singapore; Gonzalez-Porta M., Nalagenetics Pte Ltd., Singapore, Singapore
Background: Microarrays are a well-established and widely adopted technology capable of interrogating hundreds of thousands of loci across the human genome. Combined with imputation to cover common variants not included in the chip design, they offer a cost-effective solution for large-scale genetic studies. Beyond research applications, this technology can be applied for testing pharmacogenomics, nutrigenetics, and complex disease risk prediction. However, establishing clinical reporting workflows requires a thorough evaluation of the assay’s performance, which is achieved through validation studies. In this study, we performed pre-clinical validation of a genetic testing workflow based on the Illumina Global Screening Array for 25 pharmacogenomic-related genes. Methods: To evaluate the accuracy of our workflow, we conducted multiple pre-clinical validation studies. Here, we present the results of accuracy and precision assessments, involving a total of 73 cell lines. These assessments encompass reference materials from the Genome-In-A-Bottle (GIAB), the Genetic Testing Reference Material Coordination Program (GeT-RM) projects, as well as additional samples from the 1000 Genomes project (1KGP). We conducted an accuracy assessment of genotype calls for target loci in each indication against established truth sets. Results: In our per-sample analysis, we observed a mean analytical sensitivity of 99.39% and specificity 99.98%. We further assessed the accuracy of star-allele calls by relying on established diplotypes in the GeT-RM catalogue or calls made based on 1KGP genotyping. On average, we detected a diplotype concordance rate of 96.47% across 14 pharmacogenomic-related genes with star allele-calls. Lastly, we evaluated the reproducibility of our findings across replicates and observed 99.48% diplotype and 100% phenotype inter-run concordance. Conclusion: Our comprehensive validation study demonstrates the robustness and reliability of the developed workflow, supporting its readiness for further development for applied testing. Copyright © 2024 Gan, Hajis, Yumna, Haruman, Matoha, Wahyudi, Silalahi, Oktariani, Dela, Annisa, Pitaloka, Adhiwijaya, Pauzi, Hertanto, Kumaheri, Sani, Irwanto, Pradipta, Chomchopbun and Gonzalez-Porta.
copy number variation (CNV) calling; microarray-based genotyping; pharmacogenomics; single nucleotide variant (SNV) calling; SNP microarray
adult; allele; article; controlled study; copy number variation; diagnosis; gene; genetic screening; genotype; genotyping; human; human genome; nutrigenetics; pharmacogenomics; phenotype; prediction; reliability; reproducibility; screening; single nucleotide polymorphism; single nucleotide polymorphism array; validation study; workflow
Frontiers Media SA
16639812
Article
Q1
1064
3797