Publikasi Scopus 2010 s/d 2022

Prawiningrum A.F., Paramita R.I., Panigoro S.S.
57221924249;54882436900;56790104300;
Immunoinformatics Approach for Epitope-Based Vaccine Design: Key Steps for Breast Cancer Vaccine
2022
Diagnostics
12
12
2981
2
Master’s Programme in Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, 10430, Indonesia; Bioinformatics Core Facilities—IMERI, Faculty of Medicine, Universitas Indonesia, Jakarta, 10430, Indonesia; Doctoral Program in Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, 10430, Indonesia; Department of Medical Chemistry, Faculty of Medicine, Universitas Indonesia, Jakarta, 10430, Indonesia; Surgical Oncology Division, Department of Surgery, Faculty of Medicine, Universitas Indonesia, Jakarta, 10430, Indonesia
Prawiningrum, A.F., Master’s Programme in Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, 10430, Indonesia, Bioinformatics Core Facilities—IMERI, Faculty of Medicine, Universitas Indonesia, Jakarta, 10430, Indonesia; Paramita, R.I., Bioinformatics Core Facilities—IMERI, Faculty of Medicine, Universitas Indonesia, Jakarta, 10430, Indonesia, Doctoral Program in Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, 10430, Indonesia, Department of Medical Chemistry, Faculty of Medicine, Universitas Indonesia, Jakarta, 10430, Indonesia; Panigoro, S.S., Surgical Oncology Division, Department of Surgery, Faculty of Medicine, Universitas Indonesia, Jakarta, 10430, Indonesia
Vaccines are an upcoming medical intervention for breast cancer. By targeting the tumor antigen, cancer vaccines can be designed to train the immune system to recognize tumor cells. Therefore, along with technological advances, the vaccine design process is now starting to be carried out with more rational methods such as designing epitope-based peptide vaccines using immunoinformatics methods. Immunoinformatics methods can assist vaccine design in terms of antigenicity and safety. Common protocols used to design epitope-based peptide vaccines include tumor antigen identification, protein structure analysis, T cell epitope prediction, epitope characterization, and evaluation of protein–epitope interactions. Tumor antigen can be divided into two types: tumor associated antigen and tumor specific antigen. We will discuss the identification of tumor antigens using high-throughput technologies. Protein structure analysis comprises the physiochemical, hydrochemical, and antigenicity of the protein. T cell epitope prediction models are widely available with various prediction parameters as well as filtering tools for the prediction results. Epitope characterization such as allergenicity and toxicity can be done in silico as well using allergenicity and toxicity predictors. Evaluation of protein–epitope interactions can also be carried out in silico with molecular simulation. We will also discuss current and future developments of breast cancer vaccines using an immunoinformatics approach. Finally, although prediction models have high accuracy, the opposite can happen after being tested in vitro and in vivo. Therefore, further studies are needed to ensure the effectiveness of the vaccine to be developed. Although epitope-based peptide vaccines have the disadvantage of low immunogenicity, the addition of adjuvants can be a solution. © 2022 by the authors.
breast cancer; epitope; immunoinformatics; vaccine
cancer vaccine; DNA; epitope; epitope based peptide vaccine; HLA A2 antigen; HLA A3 antigen; HLA antigen class 1; peptide vaccine; tumor antigen; unclassified drug; allergenicity; antigen presenting cell; antigen recognition; antigenicity; binding affinity; bioinformatics; breast cancer; clinical evaluation; clinical trial (topic); computer model; drug design; drug efficacy; drug safety; high throughput technology; human; immune response; immunoinformatics; in vitro study; in vivo study; molecular docking; nonhuman; phase 2 clinical trial (topic); physical chemistry; protein analysis; protein conformation; protein epitope interaction; protein interaction; protein structure; Review; T lymphocyte; toxicity testing; vaccination; vaccine development; vaccine immunogenicity
MDPI
20754418
Review
Q2
658
7369